

!
1.Data preparation:
 Split into 4-tile dataset: 4 x CIFAR-10 set
 (more overcomplete)
!

2.Full basis for each 12x12 tile
!
3.do { train D-Wave into representation (dictionary):

1.each tile has been run 10 times
2.pick the configuration of min energy }

!
4. Classification: 10-class task (liblinear-package)

{�i}

Classification Work Steps

Coates et al, 2011

Adam Coates, Honglak Lee, Andrew Y. Ng

Figure 1: Illustration showing feature extraction using a w-by-w receptive field and stride s. We first extract
w-by-w patches separated by s pixels each, then map them to K-dimensional feature vectors to form a new
image representation. These vectors are then pooled over 4 quadrants of the image to form a feature vector for
classification. (For clarity we have drawn the leftmost figure with a stride greater than w, but in practice the
stride is almost always smaller than w.)

on the CIFAR-10 training set. We will then report the
results achieved on both CIFAR-10 and NORB test
sets using each unsupervised learning algorithm and
the parameter settings that our analysis suggests is
best overall (i.e., in our final results, we use the same
settings for all algorithms).5

Our basic testing procedure is as follows. For each un-
supervised learning algorithm in Section 3.1.2, we will
train a single-layer of features using either whitened
data or raw data and a choice of the parameters K, s,
and w. We then train a linear classifier as described
in Section 3.2.2, then test the classifier on a holdout
set (for our main analysis) or the test set (for our final
results).

4.1 Visualization

Before we present classification results, we first show
visualizations of the learned feature representations.
The bases (or centroids) learned by sparse autoen-
coders, sparse RBMs, K-means, and Gaussian mix-
ture models are shown in Figure 2 for 8 pixel recep-
tive fields. It is well-known that autoencoders and
RBMs yield localized filters that resemble Gabor fil-
ters and we can see this in our results both when us-
ing whitened data and, to a lesser extent, raw data.
However, these visualizations also show that similar
results can be achieved using clustering algorithms.
In particular, while clustering raw data leads to cen-
troids consistent with those in [6] and [29], we see that
clustering whitened data yields sharply localized filters
that are very similar to those learned by the other al-
gorithms. Thus, it appears that such features are easy
to learn with clustering methods (without any param-
eter tweaking) as a result of whitening.

5To clarify: The parameters used in our final evaluation
are those that achieved the best (average) cross-validation
performance across all models: whitening, 1 pixel stride, 6
pixel receptive field, and 1600 features.

100 200 400 800 1200 1600
50

55

60

65

70

75

80

Features

C
ro

ss
−V

al
id

at
io

n
Ac

cu
ra

cy
 (%

)

Performance for Raw and Whitened Inputs

 kmeans (tri) raw
 kmeans (hard) raw
 gmm raw
 autoencoder raw
 rbm raw
 kmeans (tri) white
 kmeans (hard) white
 gmm white
 autoencoder white
 rbm white

100 200 400 800 1200 1600
50

55

60

65

70

75

80

Figure 3: E↵ect of whitening and number of bases (or
centroids).

4.2 E↵ect of whitening

We now move on to our characterization of perfor-
mance on various axes of parameters, starting with the
e↵ect of whitening6, which visibly changes the learned
bases (or centroids) as seen in Figure 2. Figure 3 shows
the performance for all of our algorithms as a function
of the number of features (which we will discuss in the
next section) both with and without whitening. These
experiments used a stride of 1 pixel and 6 pixel recep-
tive field.

For sparse autoencoders and RBMs, the e↵ect of
whitening is somewhat ambiguous. When using only
100 features, there is a significant benefit of whiten-
ing for sparse RBMs, but this advantage disappears
with larger numbers of features. For the clustering
algorithms, however, we see that whitening is a cru-
cial pre-process since the clustering algorithms cannot
handle the correlations in the data.7

6In our experiments, we use Zero-phase whitening [2]
7Our GMM implementation uses diagonal covariances

45 D-Wave 2X
(~1K, canny-filtered grayscale 24x24 images)

45

CIFAR-10, 60K 32x32 RGB images

Nf

