Daniel O’Malley & Velimir V. Vesselinov

Computational Earth Science
Los Alamos National Laboratory

Unclassified: LA-UR-16-27674

P N
e, - Los Alamos
. Earth & NATIONAL LABORATORY
N Environmental EST.1943
Sciences

Programming D-Wave machines

" order approximation) o
1% order approximation

n i—1
= er?olrll} Za,qZ + Zwaqij q ~ e AEi et i, YT biyai;)
q n
i=1 j=1

» The core task of programming a D-Wave machine is to assemble

n 1—1

Z a;q; + Z Z bZJQZQJ

i=1 j=1

in such a way that one of the above approximations will be useful

How can ToQ.jl help?

v

ToQ.jl makes it relatively easy to assemble a “logical QUBO”
» Don’t have to worry about the sparsity of b;;
» Don’t have to worry about the bounds on a; and b;;
» Do have all the features of Julia

ToQ.jl makes it very easy to use different backends

> dw
» Python SAPI
» gbsolv

ToQ.jl makes it very easy to write hybrid classical/quantum
programs

» Use Julia to write the classical part

» Use Julia+ToQ.jl to interact with the D-Wave
Sidenote: ToQ.jl is a misnomer and has nothing to do with
D-Wave’s ToQ — name change coming soon

v

v

v

» Color the 13
Canadian
provinces with 3
colors

» Assign exactly
one of three
colors to each
province

» No two ,
neighboring e ' ; =
provinces can g A7
have the same
color

Assembling a logical QUBO
Coloring the map of Canada

» Color the 13

provinces = ["BC", "YK", "NW", "AB",...

Canadian neighbors = Dict ()
provinces with neighbors["BC"] = ["YK", "NW", "AB"]
3 colors neighbors["YK"] = ["BC", "NW"]
neighbors["NW"] = ["YK", "BC", "AB", "SK",
» Assign exactly mwvr;
one of three neighbors["AB"] = ["BC", "NW", "SK"]
colors to each ~ Peighbors["SK"] = ["AB", "NW", "MT"]
. neighbors["NV"] = ["NW", "MT"]
province neighbors["MT"] = ["NV", "SK", "ON"]
» No two neighbors["ON"] = ["MT", "QB"]
neighboring neighbors["QB"] = ["ON", "NB", "NL"]
R neighbors["NB"] = ["QB", "NS"]
provmces can neighbors["NS"] = ["NB"]
have the same cighbors("pE"] = |
color neighbors["NL"] = ["QB"]

Assembling a logical QUBO
Coloring the map of Canada

» Color the 13

Canadian
provinces with
3 colors

> Assign exactly m = ToQ.Model ("canada_model", "laptop",
one of three "c4d-sw_sample", "workingdir", "c4")
colors to each ,

. @defvar m red[l:length(provinces)]

province @defvar m green[l:length(provinces)]

» No two @defvar m blue[l:length (provinces)]
neighboring

provinces can
have the same
color

Assembling a logical QUBO
Coloring the map of Canada

» Color the 13
Canadian
provinces with 3
colors

—(+ @+ @)+ 2(qq2 + @163 + ¢2q3)

> ASSlgn exactly for i = l:length(provinces)

one of three Gaddterm

Qaddterm

colors to each eaddterm

province Qaddterm

» No two Qaddterm

. . Qaddterm
neighboring end

provinces can
have the same
color

m

m
m
m
m
m

-1 x red[i]

-1 % green([i]

-1 x blueli]

2 % red[i] % green(i]
2 x red[1i] = blueli]

2 % green[i] * blue[i]

Assembling a logical QUBO
Coloring the map of Canada

» Color the 13

Canadian
provinces with 3 e + G192 + biby
colors
. for j = l:length(provinces)
» Assign exactly for k = 1:3 - 1
one of three if provinces|[k] in neighbors[provinces[j]]
colors to each @addterm m red[j] = redl[k]

prOVInCG @addterm m bluelj]
» No two end
neighboring end

end

provinces can
have the same
color

@addterm m green|[j]

* green[k]
* bluelk]

I’'ve got the QUBO, now what?
Coloring the map of Canada

#sample with dw

ToQ.solve! (m; numreads=100, param_chain=2)

#load the first dw sample

@loadsolution m energy occurrences isvalid 1
#print the first dw sample
println (hcat (red.value, blue.value, green.value))

#sample with Python SAPI

ToQ.solvesapi! (m; num_reads=100, param_chain=2)
#load the first SAPI sample

@loadsolution m energy occurrences isvalid 1
#print the first SAPI sample
println (hcat (red.value, blue.value, green.value))

#solve with gbsolv

ToQ.gbsolv! (m; minval=-13 * wl)

#print the gbsolv solution
println (hcat (red.value, blue.value, green.value))

Coloring arbitrary maps with 25 lines

function colormap (regions, neighbors, numcolors; wl=l, w2=1)

colornames = ["red", "orange", "yellow", "green", "blue", "indigo", "violet"]
m = ToQ.Model ("mapcolor", "laptop", "c4-sw_sample", "workingdir", "c4")
@defvar m colors[l:length(regions), l:numcolors]

for i = l:length(regions)

for j = l:numcolors

@addterm m -wl * colors[i, j]
for k = 1:3 - 1
@addterm m 2 * wl % colors[i, Jj] * colors[i, k]
end
end
end
for j = l:length(regions
for k = 1:3 - 1
if regions[k] in neighbors[regions[j]]

for i = l:numcolors
Qaddterm m w2 * colors[j, i] * colors[k, il
end
end
end
end

ToQ.gbsolv! (m; minval=-length(regions) * wl)

result = Dict(zip(regions, map(i->colornames[indmax (vec(colors.value[i, :]))], l:length(regions)).
return result
end

counties, county neighbors = parseusa("county_adjacency.txt")
usa_answer = colormap (counties, county_neighbors, 4)

Uncertainty Quantification: a long story short

» The developed UQ methods are not “ready for prime time”

» However, there are clear paths for improvement that could be
pursued with more time & effort

V. (kVu) = f

ke B
-

V. (kVu) = f

V- (kVu)=f

The uncertainty quantification

Two sets of bits that will be represented on the D-Wave hardware: the
q; bits are used to represent k£ and the r; bits are used to represent f.

ui—di ~ N(O,l)

ki = klow + Qi(khigh - klow)
fi = -
0 = kictui—1 — (kim1 + ki)us + kiuipr — fi
N—1
H(q,r) = Z [kioqwiy — (ki1 + k)i + ki, — fi] (1)
=2

Get samples from the D-Wave with likelihood

exp(—BH"(q,1))

use importance sampling to estimate statistics of £ and f.

1% order approximation N
q~ 6_'3(2?=1 aiqr"Z?:l Z;;i bijQin) :o.e
Let a; = h Vi and bij =0 Vi,j M
exp(—ph)
Plg=1;h,8) = — 1
(4 A) exp(—ph) +1

* Simulator
-+ DW2X_SYs4

— 3=3.000082675048157
— 3=6.825800702493087

N M
B= arg min > (Plg=1;hi,) =Y q}/M)*
i—1 j=1

Importance sampling: Boltzmann— Target

Boltzmann Log-Likelihood

Boltzmann

165

160

-
ol
o

150

0 200 400 600 800 1000 1200 1400
Sample Number

67’8(2?:1 aiqity i, Z;;ll bijqid;)

Target Log-Likelihood

-120
-140
-160
“1s0) e
-200
-220

-240

Target

0 200 400 600 800 1000 1200 1400 1600
Sample Number

f(a)

o B(Xiy aiai+ 07y 3570 bijaidy)

Possible next steps

» Use a better approximation for the D-Wave sampling likelihood
» Results that are being presented today?

> exp {5 [Z(l + €i)aiqi + Z(l + Eij)bz‘jqz‘qj‘] }
i i<j
» Better Boltzmann sampling from D-Wave
» Finish off each sample with a short MCMC chain
» Reduce the impact of embedding

» D-Wave’s “product X”

Conclusion

» Importance sampling did not work well here, but we can and
(someone) will do better in the future
» ToQ.jl is available on GitHub
» https://github.com/losalamos/ToQ.j|

» Many thanks to the D-Wave team for their help along the way

