
Quantum Uncertainty Quantification for Physical
Models using ToQ.jl

Daniel O’Malley & Velimir V. Vesselinov

Computational Earth Science
Los Alamos National Laboratory

Unclassified: LA-UR-16-27674



Programming D-Wave machines

0th order approximation

q̂ = min
q∈{0,1}n

n∑
i=1

aiqi +

n∑
i=1

i−1∑
j=1

bijqiqj

1st order approximation

q ∼ e−β(
∑n

i=1 aiqi+
∑n

i=1

∑i−1
j=1 bijqiqj)

I The core task of programming a D-Wave machine is to assemble

n∑
i=1

aiqi +

n∑
i=1

i−1∑
j=1

bijqiqj

in such a way that one of the above approximations will be useful



How can ToQ.jl help?

I ToQ.jl makes it relatively easy to assemble a “logical QUBO”
I Don’t have to worry about the sparsity of bij
I Don’t have to worry about the bounds on ai and bij
I Do have all the features of Julia

I ToQ.jl makes it very easy to use different backends
I dw
I Python SAPI
I qbsolv

I ToQ.jl makes it very easy to write hybrid classical/quantum
programs

I Use Julia to write the classical part
I Use Julia+ToQ.jl to interact with the D-Wave

I Sidenote: ToQ.jl is a misnomer and has nothing to do with
D-Wave’s ToQ – name change coming soon



Assembling a logical QUBO
Coloring the map of Canada

I Color the 13
Canadian
provinces with 3
colors

I Assign exactly
one of three
colors to each
province

I No two
neighboring
provinces can
have the same
color



Assembling a logical QUBO
Coloring the map of Canada

I Color the 13
Canadian
provinces with
3 colors

I Assign exactly
one of three
colors to each
province

I No two
neighboring
provinces can
have the same
color

provinces = ["BC", "YK", "NW", "AB",...
neighbors = Dict()
neighbors["BC"] = ["YK", "NW", "AB"]
neighbors["YK"] = ["BC", "NW"]
neighbors["NW"] = ["YK", "BC", "AB", "SK",
"NV"]
neighbors["AB"] = ["BC", "NW", "SK"]
neighbors["SK"] = ["AB", "NW", "MT"]
neighbors["NV"] = ["NW", "MT"]
neighbors["MT"] = ["NV", "SK", "ON"]
neighbors["ON"] = ["MT", "QB"]
neighbors["QB"] = ["ON", "NB", "NL"]
neighbors["NB"] = ["QB", "NS"]
neighbors["NS"] = ["NB"]
neighbors["PE"] = []
neighbors["NL"] = ["QB"]



Assembling a logical QUBO
Coloring the map of Canada

I Color the 13
Canadian
provinces with
3 colors

I Assign exactly
one of three
colors to each
province

I No two
neighboring
provinces can
have the same
color

m = ToQ.Model("canada_model", "laptop",
"c4-sw_sample", "workingdir", "c4")

@defvar m red[1:length(provinces)]
@defvar m green[1:length(provinces)]
@defvar m blue[1:length(provinces)]



Assembling a logical QUBO
Coloring the map of Canada

I Color the 13
Canadian
provinces with 3
colors

I Assign exactly
one of three
colors to each
province

I No two
neighboring
provinces can
have the same
color

−(q1 + q2 + q3) + 2(q1q2 + q1q3 + q2q3)

for i = 1:length(provinces)
@addterm m -1 * red[i]
@addterm m -1 * green[i]
@addterm m -1 * blue[i]
@addterm m 2 * red[i] * green[i]
@addterm m 2 * red[i] * blue[i]
@addterm m 2 * green[i] * blue[i]

end



Assembling a logical QUBO
Coloring the map of Canada

I Color the 13
Canadian
provinces with 3
colors

I Assign exactly
one of three
colors to each
province

I No two
neighboring
provinces can
have the same
color

r1r2 + g1g2 + b1b2

for j = 1:length(provinces)
for k = 1:j - 1
if provinces[k] in neighbors[provinces[j]]
@addterm m red[j] * red[k]
@addterm m green[j] * green[k]
@addterm m blue[j] * blue[k]

end
end

end



I’ve got the QUBO, now what?
Coloring the map of Canada

#sample with dw
ToQ.solve!(m; numreads=100, param_chain=2)
#load the first dw sample
@loadsolution m energy occurrences isvalid 1
#print the first dw sample
println(hcat(red.value, blue.value, green.value))

#sample with Python SAPI
ToQ.solvesapi!(m; num_reads=100, param_chain=2)
#load the first SAPI sample
@loadsolution m energy occurrences isvalid 1
#print the first SAPI sample
println(hcat(red.value, blue.value, green.value))

#solve with qbsolv
ToQ.qbsolv!(m; minval=-13 * w1)
#print the qbsolv solution
println(hcat(red.value, blue.value, green.value))



Coloring arbitrary maps with 25 lines

function colormap(regions, neighbors, numcolors; w1=1, w2=1)
colornames = ["red", "orange", "yellow", "green", "blue", "indigo", "violet"]
m = ToQ.Model("mapcolor", "laptop", "c4-sw_sample", "workingdir", "c4")
@defvar m colors[1:length(regions), 1:numcolors]
for i = 1:length(regions)
for j = 1:numcolors
@addterm m -w1 * colors[i, j]
for k = 1:j - 1
@addterm m 2 * w1 * colors[i, j] * colors[i, k]

end
end

end
for j = 1:length(regions)
for k = 1:j - 1
if regions[k] in neighbors[regions[j]]
for i = 1:numcolors
@addterm m w2 * colors[j, i] * colors[k, i]
end

end
end

end
ToQ.qbsolv!(m; minval=-length(regions) * w1)
result = Dict(zip(regions, map(i->colornames[indmax(vec(colors.value[i, :]))], 1:length(regions))))
return result
end

counties, county_neighbors = parseusa("county_adjacency.txt")
usa_answer = colormap(counties, county_neighbors, 4)



Uncertainty Quantification: a long story short

I The developed UQ methods are not “ready for prime time”
I However, there are clear paths for improvement that could be

pursued with more time & effort



The physics problem

∇ · (k∇u) = f



The physics problem

∇ · (k∇u) = f



What we know

∇ · (k∇u) = f



What we don’t know

∇ · (k∇u) = f



The uncertainty quantification

Two sets of bits that will be represented on the D-Wave hardware: the
qi bits are used to represent k and the ri bits are used to represent f .

ui − ûi ∼ N(0, 1)

ki = klow + qi(khigh − klow)
fi = −ri
0 = ki−1ui−1 − (ki−1 + ki)ui + kiui+1 − fi

H(q, r) =

N−1∑
i=2

[ki−1ui−1 − (ki−1 + ki)ui + kiui+1 − fi]2 (1)

Get samples from the D-Wave with likelihood

exp(−βH∗(q, r))

use importance sampling to estimate statistics of k and f .



Boltzmann approximation? Effective temperature?

1st order approximation

q ∼ e−β(
∑n

i=1 aiqi+
∑n

i=1

∑i−1
j=1 bijqiqj)

Let ai = h ∀i and bij = 0 ∀i, j

P (q = 1;h, β) =
exp(−βh)

exp(−βh) + 1

β̂ = argmin
β

N∑
i=1

(P (q = 1;hi, β)−
M∑
j=1

qij/M)2



Importance sampling: Boltzmann→Target

Boltzmann

e−β(
∑n

i=1 aiqi+
∑n

i=1

∑i−1
j=1 bijqiqj)

Target

f(q)

e−β(
∑n

i=1 aiqi+
∑n

i=1

∑i−1
j=1 bijqiqj)



Possible next steps

I Use a better approximation for the D-Wave sampling likelihood
I Results that are being presented today?

I exp

−β
∑

i

(1 + εi)aiqi +
∑
i<j

(1 + εij)bijqiqj


I Better Boltzmann sampling from D-Wave
I Finish off each sample with a short MCMC chain

I Reduce the impact of embedding
I D-Wave’s “product X”



Conclusion

I Importance sampling did not work well here, but we can and
(someone) will do better in the future

I ToQ.jl is available on GitHub
I https://github.com/losalamos/ToQ.jl

I Many thanks to the D-Wave team for their help along the way




